任意项级数比值判别法过程?
比值判别法判定级数的敛散性就是:后项比前项的极限,小于1收敛,大于1发散 1.lim(n→+∞)u(n+1)/u(n) =lim(n→+∞)[5^(n+1)/(6^(n+1)-5^(n+1))]/[5^n/(6^n-5^n)] =lim(n→+∞)5[1-(5/6)^n]/[6-5(5/6)^n]=5/6<1,故级数收敛 2..lim(n→+∞)u(n+1)/u(n) =.lim(n→+∞)[(n+1)^(n+1)/(n+1)!]/[(n)^(n)/n!] =lim(n→+∞)[(1+1/n)^n=e>1,说以级数发散
1、先判断这是正项级数还是交错级数;
2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等;
3、判定交错级数的敛散性:利用莱布尼茨判别法进行分析判定;利用绝对级数与原级数之间的关系进行判定;一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散;有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定;
4、求幂级数的收敛半径、收敛区间和收敛域。若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域;对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径;
5、求幂级数的和函数与数项级数的和:求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和;求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值;
6、将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。
交错级数的莱普尼茨定理?
莱布尼兹定理证明交错级数收敛,但并不能区分是条件收敛或绝对收敛,需要另外判断。例如∑[(-1)^n]/n条件收敛,而∑[(-1)^n]/n^2绝对收敛,但都可以用莱布尼兹定理证明收敛。
在交错级数中,常用莱布尼茨判别法来判断级数的收敛性,即若交错级数各项的绝对值单调递减且极限是零,则该级数收敛;此外,由莱布尼茨判别法可得到交错级数的余项估计。最典型的交错级数是交错调和级数。